Graphical Event Models
and
Causal Event Models

Chris Meek
Microsoft Research
Graphical Models

• Defines a joint distribution $P(X)$ over a set of variables $X = \{X_1, ..., X_n\}$

• A graphical model $\mathcal{M} = \langle G, \Theta \rangle$

 – $G = \langle X, E \rangle$ is a directed acyclic graph.

 – $\Theta = \{\Theta_1, ..., \Theta_n\}$ where Θ_i defines the conditional distribution $P(X_i|\pi_i)$ where π_i are the parents of X_i in G.

• Learning: Assume we see many draws from $P(X)$.

\[
P(X_1) = f_1(X_1, \Theta_1)
\]
\[
P(X_2) = f_2(X_2, \Theta_2)
\]
\[
P(X_3|X_1, X_2) = f_3(X_3, X_1, X_2, \Theta_3)
\]
Graphical Models

• Explaining away type reasoning
 – What is probability of Burglary given AlarmSound?
 – What is probability of Burglary given AlarmSound and a NewsReport of an earthquake?
Graphical Models

• Explaining away type reasoning
 – What is probability of Burglary given AlarmSound?
 – What is probability of Burglary given AlarmSound and a NewsReport of an earthquake?
 – What if the NewsReport said the earthquake was after the Alarm went off?
Outline

- Temporal Event Sequences
- Graphical Event Models
- Learning Graphical Event Models
- Learning Causal Dependencies
 - Causal Event Model \leftrightarrow Graphical Event Models
Modeling temporal event streams

A temporal event stream is a \textit{time-stamped} stream of \textit{labeled} events.

This type of data is pervasive: datacenter event logs, search queries, ...

Want to model: \textit{What} events will happen \textit{when}, based on \textit{what} events have happened \textit{when}.
Temporal Event Sequences:
Event Logs from a Datacenter

\[\mathcal{L} \text{ is the set of possible events (i.e., things that can happen)} \]

\[\mathcal{D} = \{(t_1, l_1), (t_2, l_2), (t_3, l_3), ... (t_n, l_n)\} \text{ where } l \in \mathcal{L} \text{ and } t_i < t_{i+1} \]
Marked point processes

Treat data as a realization of a marked point process:

\[x = (t_1, l_1), \ldots, (t_n, l_n) \]

Forward in time likelihood:

\[p(x) = \prod_{i=1}^{n} p(t_i, l_i | h_i) \]

where the history \(h_i = h_i(x) = (t_1, l_1), \ldots, (t_{i-1}, l_{i-1}) \)

Any \(p(t_i, l_i | h_i) \) can be represented via conditional intensities \(\lambda_l(t_i | h_i) \):

\[p(t_i, l_i | h_i) = \prod_{l} \lambda_l(t_i | h_i) \text{1}_{(l=l_i)} e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Proof sketch

Given pdf $p(t)$ define:

$$\lambda(t) \triangleq \frac{p(t)}{1 - \int_0^t p(\tau)d\tau} \frac{1}{P(t)}$$

Then,

$$P'(t) = \lambda(t)[1 - P(t)]$$

Calculus:

$$P(t) = 1 - e^{-\int_0^t \lambda(\tau)d\tau}$$

$$p(t) = \lambda(t)e^{-\int_0^t \lambda(\tau)d\tau}$$

Given $p(t, l) = p(t)p(l|t)$ define

$$\lambda_l(t) \triangleq \lambda(t)p(l|t)$$

Then

$$p(t, l') = p(t)p(l'|t) = \lambda_{l'}(t)e^{-\sum_l \int_0^t \lambda_l(\tau)d\tau}$$
Conditional intensities

\[\lambda_l(t_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{l=l_i} e^{- \int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i) \mathbb{1}(l = l_i) e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{l(l=l_i)} e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{\mathbb{1}(l=l_i)} e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[
p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i) \mathbb{1}(l = l_i) e^{- \int_{0}^{t_i} \lambda_l(\tau | h_i) d\tau}
\]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{l(l=1)} e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{\mathbb{1}(l=l_i)} e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{l(l=l_i)} e^{\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\(\lambda_{\bullet}(t|h) \)

\(\lambda_{\bullet}(t|h) \)

\[p(t_i, l_i|h_i) = \prod_l \lambda_l(t_i|h_i)^{\mathbb{1}(l=l_i)} e^{-\int_0^{t_i} \lambda_l(t|h_i) dt} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{l(l=l_i)} e^{-\int_0^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_{l} \lambda_l(t_i | h_i) \mathbb{1}_{(l=l_i)} e^{-\int_{0}^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

\[p(t_i, l_i | h_i) = \prod_l \lambda_l(t_i | h_i)^{I_l=l_i} e^{-\int_{0}^{t_i} \lambda_l(\tau | h_i) d\tau} \]
Conditional intensities

1) Behavior of different event types specified separately
2) Highlights dependency of each event type on history
Event Sequence Notation

Example: \(\mathcal{L} = \{a, b, c\} \)
\[
\mathcal{D} = \{(t_1, l_1), \ldots (t_n, l_n)\}
\]
e.g., \(\{(1, a), (3, b), (t_3 = 5, a), (8, c)\} \)

\(h_i = h(t, \mathcal{D}) \) is the **history up to** \(i \)

\[
h_3 = \{(1, a), (3, b), (5, a)\}
\]

\([h]_A \) is the **filtered history** for \(A \subseteq \mathcal{L} \)

\[
[\mathcal{D}]_a = \{(1, a), (5, a)\}
\]
Graphical Event Models

A **Graphical Event Model** (GEM) is a pair $\langle G, \Theta \rangle$

Vertices for each event type $\mathcal{L} = \{a, b, c\}$

Edges represent potential dependencies $\Theta_l \in \Theta$ parameterizes intensity function for l

\[
\begin{align*}
\lambda_a(t|h, \Theta_a) &= \lambda_a(t|h, \pi_a, \Theta_a) \\
\lambda_b(t|h, \Theta_b) &= \lambda_b(t|h, \pi_b, \Theta_b) \\
\lambda_c(t|h, \Theta_c) &= \lambda_c(t|h, \pi_c, \Theta_c)
\end{align*}
\]
Learning Graphical Event Models

- Specify functional form(s) for intensities λ_l with separate parameters for each event
- Likelihood factors according to \mathcal{L} so we can learn each intensity function separately.
 - Bayesians also require factorization of prior
- Search over space of directed graphs
 - Add/remove parents that improve the score
Piecewise-Constant CIMs (PCIM)

- Idea: restrict $\lambda_l(t_i|h_i)$ to be piecewise constant in t for all event sequences
- A state function $\sigma(t, h)$ maps histories to a discrete set of states Σ
- A PCIM is a pair $\mathcal{M} = \langle S, \Theta \rangle$ where
 - Structure $S = \{\langle \sigma_l(t, h), \Sigma_l \rangle\}_{l \in L}$
 - Parameters $\Theta = \{\Theta_l\}_{l \in L}$ and $\Theta_l = \{\lambda_{ls}\}_{s \in \Sigma_l}$
Piecewise-Constant ClMs

\[\sigma_a(t, h) \]
\[\sigma_b(t, h) \]
\[\sigma_c(t, h) \]

State Functions (coloring)

\[\lambda_a(\text{white}) = 0 \quad \lambda_a(\text{light blue}) = 0.1 \quad \lambda_a(\text{blue}) = 10 \quad \ldots \lambda_c(\text{dark purple}) = 10 \]
Piecewise-Constant CIM

- A PCIM (CIM) $\mathcal{M} = \langle S, \Theta \rangle$ (where $\Theta = \{\Theta_1, \ldots, \Theta_{|\mathcal{L}|}\}$ and $\Theta_l = \{\lambda_{ls}\}_{s \in \Sigma_l}$) has likelihood

$$p(\mathcal{D}|\mathcal{M}) = \prod_{l \in \mathcal{L}} \prod_{s \in \Sigma_l} \lambda_{ls}^{c(l,s)} e^{-\lambda_{ls}d(l,s)}$$

$c(l, s)$ is the count of event l when $\sigma_l(t, h) = s$ in \mathcal{D}

d(l, s) is the total duration of $\sigma_l(t, h) = s$ in \mathcal{D}
Piecewise-Constant CIM

Product of Gammas is conjugate prior, even though the likelihood isn’t a product of exponentials!

\[
p(\lambda_{ls} | \alpha_{ls}, \beta_{ls}) = \frac{\beta_{ls}}{\Gamma(\alpha_{ls})} \lambda_{ls}^{\alpha_{ls} - 1} e^{-\beta_{ls} \lambda_{ls}}
\]

Closed-form posterior:

\[
p(\lambda_{ls} | \alpha_{ls}, \beta_{ls}, D, S) = p(\lambda_{ls} | \alpha_{ls} + c(l, s), \beta_{ls} + d(l, s))
\]

Closed-form marginal likelihood:

\[
p(D | S) = \prod_{ls} \gamma_{ls}(D) \quad \gamma_{ls}(D) = \frac{\beta_{ls}^{\alpha_{ls}}}{\Gamma(\alpha_{ls})} \frac{\Gamma(\alpha_{ls} + c(l, s))}{(\beta_{ls} + d(l, s))^{\alpha_{ls} + c(l,s)}}
\]
Piecewise-Constant CIM

Defining PCIM Structures

• Let $\mathcal{B} = \{f_1(t, h), ..., f_n(t, h)\}$ where $f_i(t, h)$ is a basis state function (BSF).

• A family of structures $\mathcal{S}(\mathcal{B})$ is obtained by combining BSFs. We use decision trees but one could use decision graphs.

Example

$$f_i(t, h) = s_i?$$

- no
 - $\sigma_l(t, h) = r$
 - λ_l \rightarrow λ_{lr}
- yes
 - $f_j(t, h) = s_j?$
 - no
 - $\sigma_l(t, h) = s$
 - λ_l \rightarrow λ_{ls}
 - yes
 - $\sigma_l(t, h) = t$
 - λ_l \rightarrow λ_{lt}
Piecewise-Constant CIM

Example Types of basis state functions $f(t, h)$

- Event-type specific state functions
 - $f(t, h) = f(t, [h]_i)$ depends only on the history of a specific event type

- Windowed state functions
 - $f(t, h) = f(t, \{h\}_{(t-s, t-e)})$ depends only on the history during a window relative to time t.

- Historical state functions
 - $f(t, h)$ depends on the “last” events that have happened but not their times.
Piecewise-Constant CIM

\[\sigma_a(t, h) \]

\[\sigma_b(t, h) \]

\[\sigma_c(t, h) \]
Piecewise-Constant CIM:Learning

We use a Bayesian Model selection approach to choose $S \in \mathcal{S}(\mathcal{B})$

- For each $l \in \mathcal{L}$
 - Start with empty decision tree (i.e., $\forall t, \forall h \sigma_l(t, h) = k$)
 - For each leaf in decision tree
 - Evaluate each possible split ($f \in \mathcal{B}, s$)
 - Choose split that most improves the marginal likelihood

Alternatively one could use MCMC to average over $\mathcal{S}(\mathcal{B})$.
Example: $\lambda_{RebootFail}$ decision tree

216 Event types

InitReboot [30 min]

SuccReboot [30 min]

Unhealth VersionCheck [30 min]

Healthy VersionCheck [30 min]
Learning Causal Graphical Models

Directed Acyclic Assumption (DAG) causal model can be represented by a directed acyclic graph $G = \langle X, E \rangle$

Data Assumption: world is described by some $P(X)$ and the observed world is some $P(O) O \subseteq X$

Reliable Information Assumption (Reliable) the world provides reliable information about independencies among observed variables $O \subseteq X$.

- $I(A, C, B)$ means A is independent of B given C
Learning Causal Graphical Models

Assumptions that connect observed world P and causal model G

Causal Markov Assumption (CMA):

If $d_G(A, B, C) \Rightarrow I_P(A, B, C)$

Note 1: $d_G(A, B, C)$ is d-separation: a vertex separation criterion
Note 2: A graphical model “non-causal” Markov w.r.t. $P(X)$ it defines

Causal Faithfulness Assumption (CFA):

If $I_P(A, B, C) \Rightarrow d_G(A, B, C)$
Learning Causal Graphical Models

Learning Scenarios

– **Complete data**: All variables observed ($X = \emptyset$)
– **Causal sufficiency**: No pair of observed variables have unobserved common ancestors.
– **General case**: $\emptyset \subseteq X$

Goal: In each learning scenario, use independence facts to identify causal information common to every graph with those independencies/separation facts.
Learning Causal Graphical Models

Mantra: “Correlation does not imply causation”

Complete data: Indistinguishable

General case: Also indistinguishable
Interesting general case result

Under the assumptions
DAG, Reliable, CMA and CFA
If the only independence facts we observe to hold are
\[I(A, \emptyset, B), I(A, C, D), I(B, C, D) \]
then \(C \) is a cause of \(D \).
Learning Causal GEMs

Step 1: Change the separation criterion from d-separation to δ-separation

$$\delta(A, C, B) \text{ in } G = \langle \mathcal{L}, \mathcal{E} \rangle \text{ if and only if } d(A, C, B) \text{ in } G^B$$

where $G^B = \langle \mathcal{L}, \mathcal{E}^B \rangle$ and $\mathcal{E}^B = \{ \langle l_1, l_2 \rangle \in \mathcal{E} | l_1 \notin B \}$

Step 2: Change from independence tests to factorization (process independence) tests

Step 3: Assume analog of CMA, CFA, Reliable

Step 4: Prove things
Learning Causal GEMs

Learning Scenarios

– **Complete data**: All variables observed \((X = \emptyset) \)
 • Result: Can recover the structure.

– **Causal sufficiency**: No pair of observed variables have unobserved common ancestors.
 • Result: Can recover the structure over \(\emptyset \). (all causes)

– **General case**: \(\emptyset \subseteq X \)
 • In Progress:
 – Some sufficient conditions for cause
 – Some sufficient conditions for non-cause
 – Some sufficient conditions for existence of unmeasured common cause
Open Issues

– Characterize what one can learn in the general case
– Justification of using Process Independence to learn cause (e.g., completeness of δ-separation)
– Principled approaches to testing process independence statements.
– Consistency of score learning for process independence.
– Relaxing assumptions such as the reliability assumption